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3.  Abstract

The project is an investigation into using imaged based methods to allow a user to interact directly with a projected image, effectively turning any surface into a touch-screen like device.  By using a video camera coupled with an infrared light source and algorithms to detect fingertips and discern the event of touching the surface, a solution was found which does not involve the use of wired or worn equipment.

Without the encumbrance of such equipment the system can be easily and quickly included into any existing projection set-up with minimal training or calibration required on the part of the user.

In addition, the system will work with any person or pointing device (e.g. ruler, stick) regardless of colour or size.

Abbreviations, Acronyms and notation

	IR
	Infra-Red

	RGB
	Red Green Blue

	BW
	Black and White

	FOV
	Field of View

	Binary Image
	1-bit black/white image

	Blob
	A connected region in a image in which all pixels have the same value.

	Contour
	The outline of a blob.

	‘touch event’
	The moment and position at which a device or finger touches a surface


4.  Introduction

 “What are the most viable methods for real-time interaction with projected game visuals without utilising wired surfaces or worn equipment; with a view to creating an automatic, stable system for consumer use?”

Modern AV solutions are becoming bigger and more immersive in all areas and recent times have seen the emergence of the “home cinema” [homecinemachoice.com, 2006]. This new style of set-up has resulted in bigger screens, filling more of a viewer’s field of vision, high definition pictures to create crisper, more realistic images and surround sound speakers to give the impression that the sound in a film or game is coming from any given direction.  

However some sort of device disconnected from the world on the screen is almost always used to interact, usually in the form of a remote control, a keyboard or a gamepad.  Recently a number of videogame peripherals have been introduced to the market that removes the disassociation of actions in the game vs. actions of the user.  “Guitar Hero” uses a simplified, guitar shaped controller [guitarherogame.com, 2006] for a rhythm-action type game, “Dance Dance Revolution” uses a wired dance-mat [en.wikipedia.org/wiki/Dance_pad, 2006], again for a rhythm-action type game and there are numerous shooting games which use light-guns [timecrisis3.namco.com, 2004], [virtuacop.jp, 2004], to allow the user to ‘shoot’ at the screen.  The Sony “EyeToy” [eyetoy.com, 2004] does away with tangible interfaces by using a video camera, mounted above the screen, for input, often providing a mirror image of the player as a reference to the interactive elements of the games.  However, in using the “EyeToy”, the player has to map between the ‘real’ space that they move in and is seen by the camera, and the ‘imaginary’ or ‘game’ space where the interactive elements actually lie.  

This project takes the concept of the “EyeToy” further, no visual feedback need be given to help the user map between ‘real’ and ‘imaginary’ space and the user need not even be aware that a camera is used at all.  

In the proposed system, for the user to activate a button on the screen they will actually touch the surface of the screen where the button is, to draw a line across the screen they would drag their finger across the screen.  At a basic level it can be imagined as a touch-screen of any size and on almost any surface.  This way the user is interacting directly with game environment; it becomes immediately intuitive to use this system, there is no learning required - as would be necessary with other external devices - and no artificial mapping of actions onto buttons is required either.

Outside of the games market this input method could be useful in presentations, for example to change slides or draw attention to specific points by circling or underlining them, without the presenter having to move from in front of the screen to do this on the computer running the presentation software.

The project’s main aims are:

1: To conceive and implement a method for identifying both ‘touch’ events, and the position of theses events, on a projected image.

2: To investigate how this system can be made accessible for untrained persons.  To create a system which is trivial to set up and calibrate, and is self-correcting. 

Organisation

Chapter 8 introduces some of the white papers and other developments from which inspiration for this project was drawn and provides some critical analysis of how they may be adapted for use in situations other than those proposed.

Chapter 9 gives an overview of the design ideas considered, and the equipment used for the project, before going on to introduce the theory behind the image processing algorithms to be used.

Chapter 10 details how these theories were implemented into an existing game engine and some of the problems that were discovered and overcome.

Chapter 11 discusses how the system was tested, how some problems with the equipment were introduced and how these problems were circumvented.

Chapter 12 gives an overview of how successful the project was and gives details of results and findings.

Chapter 13 provides a conclusion and answers any questions that may be remaining; it continues to offer advice and recommendations for any research that follows on from this project.

Literature Review 

Research by other parties thus far has seen a variety of methods for interaction invented and explored; this project aims to follow some of these ideas, take them further, and evolve them for use in a more user friendly product.  The first example of large-scale interactivity, and perhaps the original project that inspired the idea for this implementation, is “Mime Control”/”Shadow Garden” [Simpson ZB. 2002].  Taken to be the basis for the second Indie Game Jam [indiegamejam.com, 2002], it proved that interesting new gameplay and experiences can be achieved from the new levels of interaction introduced by engaging the whole player with the game environment.

The Mime Control project and art installation started as in the year 2000 and has expanded considerably in the six years since then.  It has evolved from a simple shadow tracking system to have various set-ups, from the single-sided visible light method where shadows cast by the player - interrupting the light from the projector - are identified and used to control the games, to a more advanced rear-projected method where infrared-lights in front of the projection screen cast shadows that are identified by a camera behind the screen and beside the projector, meaning that the player cast’s no visible shadow and hence the image is always perfectly visible, and that almost all of the equipment is hidden from view.  Using this infrared method is particularly interesting as not only is it non-destructive, by not casting visible shadows, but it also negates the need to filter out the projected image.  Given that the projector is a LCD, and not a Digital Light Processing (DLP) projector, the actual image will only contain visible light; using a camera with the ability to pick up infrared light only, the image will not be visible, but the shadows cast by the IR lights will be.  Without this set-up, the first step of image processing would be to identify which areas were shadows, and which were simply black areas in the projection, within this set-up, such steps are completely avoided.  
This idea of using IR to filter out the projected image was used for this project, but in a slightly different manner, more akin to that of the following paper.

Play Anywhere form Microsoft’s research lab [Wilson, A. 2004] was another project which led to the inception of this implementation, using a specialised projector/camera/IR light rig, an interactive surface is projected onto a flat surface, of about forty inches diagonal.  Users interact with the projected environment by pointing and placing recognisable objects on the surface.  As the environment is on a flat surface, this effectively creates an interactive table, when the user places a sheet of paper or a document down the image processor recognises its boundaries and can project a document or video on to the otherwise blank sheet, and keep it properly aligned and orientated when it is moved.  Placing circular makers – with individually identifiable patterns – onto the table indicates that the system should project an image, perhaps a game piece, at that position and orientated with the marker.

As well as the markers, the system can also identify fingertips, by considering the shapes of shadows, and by matching areas with pre-identified fingertip templates.  To increase accuracy a simple heuristic - that the closest shadow to the device is a fingertip - is used; as the devices are all mounted in front of the user, at the far side of the projection, they should operate the ‘screen’ from the base, even if the user is elsewhere, the positioning of the light will create a shadow in the correct direction and so this heuristic will almost always hold true.

In addition to the ability to identify fingertips touching the surface, this project has interesting concepts in the markers and document identification, however these are only possible due to the device working on a flat tabletop surface.  If adapted for use on a wall-mounted screen, these additional pieces would have to stick easily and securely onto the surface, but be easy to move or remove without causing damage.  In an everyday environment such as a living room, these small pieces could also be easily lost or damaged, rendering them unusable.  The fingertip identification, whilst very appropriate for this application, again, is not appropriate for a wall mounted version, from a standing position a players finger can point in any direction in the plane of the wall, so whilst examining the shadows is a strong idea, it needs refinement for other implementations.  

Although this system is limited, it requires a large, flat, white or near white tabletop to use it on, it would be well suited for collaborative games or applications with more than person working with it, perhaps for sorting documents, or desktop publishing

In another paper, a more permanent solution is examined, SmartSkin [Rekimoto, J. 2002], is an actual device embedded into a portable surface, which can be placed anywhere and projected on to create a touch-screen like interface.  The surface is embedded with a mesh of wires acting as an antenna that can identify the position of conductive objects, such as hands or fingers.  Advantages to this method include the fact that it does not rely on multiple pieces of equipment; it is a single piece of self contained apparatus, as opposed to a light + camera set-up.  Neither will it suffer if the lighting changes drastically, or other people or objects occlude the light or camera.  It can also be created to virtually any size, and applied to any surface, flat or curved.  However, this flexibility requires that the device is constructed to fit the surface and installed beforehand.  Few home cinema or presentation set-ups are likely to be the same as every person will configure theirs differently, for each instance a SmartSkin would need to be manufactured to fit, adding to the expense.  Once the SmartSkin is in place, it could not be moved without unfixing it, and then it could only be to another surface of the same size.  Despite these drawbacks, it is an interesting project and demonstrates the usefulness of such large-scale interfaces, although again the demo design in this was also for a tabletop surface.  Applications for fast, natural sorting of number of photographs, and gesture recognition akin to the smaller touch-pads created by FingerWorks [fingerworks.com, 2001], where by rotating a hand indicates rotation of a world, or tracing a shape with a fingertip will instigate a specific command.

Whilst a number of different sources were used in this presentation the above were of particular note, as detailed, and representative of ideas and concepts used in the others as well.  

Some of the more recent modules incorporated into Mime Control involve realistic physics, whilst not related to the display or sensing technology, the addition of this, now ubiquitous in gaming, feature adds a greater sense of intuitivity to the games, the screen feels and acts more like an extension of the real world.  Such interactivity was considered in the demos for this project and would be recommended for any further projects based it. 

Design

4.1. Ideas

From the outset, the project offered scope for a number of interesting ideas and as the project progressed many new ones were presented.  The original idea was that basic in-game interaction, similar to a touch-screen would be used - the user could point at objects to select them, drag them across the surface, draw lines or similar applications.

One idea that emerged early on was to take the pointing concept out of the game environment and apply it to the computer environment in general.  By making the application window invisible or semi-transparent and passing ‘touch’ events through to the windows desktop as mouse events this would provide mouse-like emulation which could then be used in almost any other windows application.  For example, PowerPoint slides could be changed or drawn on without the presenter having to move away from the screen to press the keyboard or use the mouse.

Another idea explored during testing and touched upon in the proposal is that of predictive shadows [Tan, DS, Pausch, R. 2002].  Instead of positioning the light alongside the camera and projector, it is positioned between the user and the screen, thus the user (or any object) between the screen and the camera will appear unlit compared to the brightly lit screen.  If this image (or a refined version of it) is fed back through the projector, the area where the user is will be black, virtually no light is projected onto the user and so they will be able to look at an audience (in the case of a presentation) or even directly towards the projector without having light blinding them.

Equipment

The project focuses on a user interface in ‘real’ space, and mapping this into the ‘game’ space, as such, custom equipment was necessary to facilitate input.

4.1.1. Camera

A standard USB web cam, converted to work in the infrared (IR) spectrum [Johnson, G, 2004], was used as the image input device.  

By considering infrared light only, the actual projected image will be ignored, as an LCD projector will only project in the spectrum of light that is visible to humans.  This simplified the processing algorithms significantly as the image will not feedback and cause errors.  For example if the algorithm is looking for a hand shape and a hand is projected on to the screen, if using a visible light camera, the image of the hand would be picked up and identified, as well as any other user’s hands, whereas it is desirable to only consider the main user’s hands; using infrared, the projected image would not be found.
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Figure 1: Equipment arrangement
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Figure 2: Equipment


4.1.2. Infrared Illuminator

As the camera can only ‘see’ infrared light, a light source was required to illuminate the surface in front of it.  

A standard incandescent light bulb is a good emitter of infrared light; but as they emit visible light too, they are unsuitable in this situation, as they will wash out the projected image.  The first attempt to circumvent this problem was to use a 48-LED infrared only, directional, light source.  However, as discussed in the ‘issues’ chapter (11.1.1), this proved underpowered and a stronger solution was required.  The final lamp used in the experiments was an Over Head Projector (OHP), with a visible light filter to ensure that only IR light reached the test surface.

4.1.3. Projector

Any data projector could have been used for this project, as the actual projected image is not involved in any of the calculations.  The only requirement would be that it is capable of displaying the windows desktop, as with any gaming application, a faster response rate will result in a cleaner picture [en.wikipedia.org/wiki/Response_time, 2006], but is not particularly necessary for the test application.

As described in the ‘calibration’ chapter (9.3.1), keystone [htrgroup.com, 2006] image correction is not necessary for the calculations, as the program will adapt to almost any shape or skew of projection, it will however make the projection look straighter to the user.

4.1.4. Non-Reflective Markers

To give the program some references for the calibration stage (as below), non-reflective markers placed at the corners were used.  These markers were simply made from black electrical tape.

Theory Overview

4.1.5. Calibration

The equipment used and the positions that each piece is set up in can vary from instance to instance, so some calibration steps must be carried out to ensure that the mapping between ‘real’ and ‘screen’ space is consistent, these are lighting and image adjustment. 

Once the equipment has been set up the first step is to set a threshold for the lighting, in the image processing stage each frame is broken down into a binary black and white image, where white represents the screen and black any shadows cast by the IR light onto the screen.  The threshold value must be set to clearly separate the dark shadows from the light screen, too low (dark) a value results in the whole screen being regarded as shadow, whilst too large (light) a value results in the shadows being washed out and indiscernible.

[image: image3.jpg]



Figure 3: Thresholding

The basic theory of the image adjustment stage is that if the camera image was fed back and projected onto the screen, it will perfectly overlay whatever is there, e.g. if a user places their hand on the screen, the image of their hand is projected directly on top of their hand.

[image: image4.jpg]



Figure 4: Projection overlaid at correct position, on user’s hand

By doing this, when a touch even is detected, the reaction can be positioned exactly where the event happened.

To do this, the image as seen by the camera must be warped to fill the screen with only the portion of the camera image that is the projection.  The main difficulty in doing this is that because the camera is infrared, it cannot actually see the projection.  If it could, corner finding algorithms could be used to identify the edges of the projection and then warp the image accordingly.  As it is, some additional equipment is necessary, non-reflective markers are placed at each of the four corners of the projection.  Since the lighting has been set in the previous step, the only thing now visible to the camera will be the four ‘blob’ shapes of the markers, by then calculating which is closest to which of the four corners and warping the image the calibration of the equipment is complete.

An alternative to this method would be to get the user to manually input the positions of the corners, for example by clicking on them with a mouse. An advantage of this image based method is that providing the calibration routine is continually run, and that there are no other shadows on the screen, the warp factors can be adjusted in real-time if the camera is moved, however because the markers must be placed by hand, if the projector or screen is moved the calibration will no longer be accurate.

[image: image5.jpg]



Figure 5: Calibrating the system

4.1.6. Image processing

Assuming that the user will be interacting by touching the projection with a finger, there are a number of different ways to identify and track this.  

A popular method is to use statistical matching, using an image as a generic template, the input image is searched for any areas that match this template, however this is quite processor intensive as the fingertip can be at any orientation and scale. [Crowley J et al. 2005]
Another method is to trace the outline of the hand and from this we can identify the ‘finger-shaped’ areas [Crowley J et al. 2005], this is faster than statistical matching and if used in combination with it to identify the search areas – the areas at the ends of ‘finger-shapes blobs’ are most likely to be fingertips. 

If the method used is different again, like the algorithm mused by Play Anywhere [Wilson, A. 2004], by considering only the shadows cast by the infrared light, it is possible not only to identify the position on the screen, but also to approximate the distance from the screen, and most importantly, the difference between touching and not touching.

By having the IR light offset from the camera the shadow cast by a fingertip will be the same shape as the finger.  As the finger moves closer to the surface, the shadow becomes occluded by the finger, when the shadow is a triangular shape with a very acute angle at one point, the finger is touching the screen.  

So, by creating a binary image (light/shadow) and searching the image for very acute angles in the shadow areas, there is no need to do statistical matching, but the position of the fingertips can be calculated.

This method could be extended to look around these shadow areas for the matching fingertip, and if the position of the light relative to the camera were known, it would become a simple matter of triangulation to calculate the distance of the fingertip from the screen.

Implementation

The system was built on top of an engine previously developed for another project [Palmer et al, 2004]; this allowed for the image processing algorithms to be implemented quickly as drop in modules, without the worries of writing routines to set-up and maintain the data.  The engine already contained functions for rendering primitive shapes and text in 2D and 3D, so image processing could be linked to give visual feedback.

From previous experience [McLaughlin et al, 2005], the OpenCV library [www.intel.com/technology/computing/opencv/, 2005] was known to be comprehensive, stable and useful library of standard image processing algorithms.  By adapting and improving previously written code  [McLaughlin et al, 2005], a module to handle image input from a connected camera, using the functionality of DirectShow [www.microsoft.com/windows/directx/, 2004], was written.  This new module had hooks to apply additional image processing functions to the data, before passing it on to an OpenGL texture, for use in any of the engines rendering functions.

These two core components formed the main project code base, on top of this was built a high visibility GUI to ease the testing process by making it east to select and switch between effects, algorithms and outputs.

4.2. Calibration

Automatic calibration begins by taking the latest image from the camera and converting it from a 24-bit RGB images to an 8-bit greyscale one.

The greyscale image is converted to a 1-bit binary image with a threshold function (CvThreshold).  Each pixel in the image is considered and if its value is greater than a user specified threshold value, the pixel is set to white, otherwise it is set to black.  A greyscale image is used here to ensure only black or white values are produced, the optimised OpenCV threshold function operates on each of the individual components of a pixel, so applying it a 24-bit colour image can result in an image with pure red, green, blue, cyan, magenta and yellow pixels as well as black and white.

Figure 6: Threshold applied to RGB image

The binary image is passed to a contour finding algorithm (cvFindContours) that compares pixels to their neighbours to trace a line around the edge of any shapes, here lines around any black ‘blob’ shapes are identified and stored as a list of Freeman chains [H. Freeman. 1961], one chain for each blob.

If four blobs are found, the next stage is to match them to the closest corner of the image.  First the centre of each blob is calculated by taking the point halfway furthest left and right points as the x value, and the point halfway between the topmost and lowermost as the y value.  Considering each corner in turn the closest point is assigned with a reference to that corner.

These point/corner pairs are used to generate a perspective transformation matrix (cvWarpPerspectiveQMatrix) that is then used to warp the image.  This effectively ‘pulls’ the centre points of each blob to its respective corner.
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Figure 7: Initial image
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Figure 8: Contours
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Figure 9: Warped image

When using the mouse, a click simply sets a point at the cursor position, when four points are set the points are paired with corners and warped as above.

4.3. Fingertips

4.3.1. Search algorithm

As with the calibration stage, the latest camera image is first reduced to a binary version of itself by a threshold function.  In this case, the black blobs will be generated from the shadows cast by any objects between the IR light and the surface receiving the projection.  The contours of the blobs are found using cvFindContours and then simplified to lower degree polygons.  

By removing the middle vertices of sections with three or more co-linear points, the amount of data required to store a contour is reduced without compromising its shape.  If the definition of co-linear rule is relaxed slightly, by allowing slight angular variations between every n points, the shape can be simplified whilst remaining similar to the original. [OpenCV Documentation, 2005]
	[image: image9.jpg]



Figure 10: Smooth contour
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Figure 11: Simplified contour


Taking the contour down to a simpler polygon serves to both reduce the number of points and so speed up the following calculations as less are required, and to accentuate the most acute angles in the shadow blobs.  As stated in the theory outline, very acute angles are the most likely candidates for points in the image where the finger is occluding most of its own shadow, and hence a ‘touch event’.

Starting from the second point in a contour (point b), the angle at that point is calculated by taking the two points (points a and c) on either side and the vectors between these and the point in question (AB and CB) 
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Equation 1: Calculating the angle α
Experimentation showed that an angle, α, of around 30° was an ideal maximum, and that the vectors AB and CB should be greater than 15 pixels in length (6% of the height of the image (240px) (See chapter 14.1 “Appendix A: Experimental results”).

4.3.2. Finger as Mouse

To increase the usability of the data, it is inserted into a simple to use structure.  Similarly to the way in which a connected mouse would be represented in a program, the data is assigned to semantically named variables and abstracted from the actual device doing the pointing.  The last recorded position is stored as a two element ‘position’ vector with x and y values, the difference between the latest position and previous in a ‘delta’ or ‘movement’ vector, and a final boolean ‘click’ value represents whether or not a ‘touch’ event is in progress.  Each frame this structure is updated and other boolean values are generated to indicate how the ‘touch’ event has changed since last time, ‘state’ indicating if it is still on the surface, ‘press’ and ‘release’ indicating if it has just touched or been removed from the surface respectively, and ‘toggle’ to show if the new state differs from the previous. (See chapter 14.2.3

 REF _Ref135117455 \h 


Finger-mouse HCI device class
)

With this simple abstracted interface to work with the application programmer can treat the ‘touch’ system much like any other pointing device that could be attached to the computer.

4.3.2.1. Multiple Fingers

If more than one finger is pressed to the surface, the search algorithm will find multiple points without knowing which are legitimate ‘pointing’ actions on the user’s behalf, which are extra points – necessary perhaps for gestures (as described below in ‘gestures’) – and which are simply errors caused by sharp angled shadows from other sources such as sleeves or other people walking past the light source.

To combat this, the search function simply returns a list of all the points that it has discovered and it is left to the programmer to design the abstract interface with the ability to decide how to act in such a situation.

Examples of two such interfaces were implemented in this project although there is huge scope for more to be designed.

4.3.2.2. Identifying one finger

The first construct (fingermouse1F) is the most basic (See Appendix A) and considers one point of contact only.  If multiple new points are found, each is tested for its distance from the current position using a simple 2D distance formula.  
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Equation 2: 2D distance

The closest point is deemed to be the most likely candidate and is used to update the structure.
4.3.2.3. Identifying two fingers

The second (fingermouse2F) was implemented originally to counteract problems faced when the IR lamp was originally discovered to be too dim for use at a distance (detailed in the testing/issues section).

From the user’s point of view, one finger is used to point, or for example, set the position a cursor, when a second finger is extended this acts like ‘clicking’ a mouse, and can be used to select or drag objects.

When one point is found the position data is updated, and a ‘touch’ state is set to false, when a second point is found, this is used to trigger the ‘touch’ state to true and the other (toggle/press/release) boolean values.

Testing

Due to difficulties in acquiring a projector, testing was originally conducted on a small scale.  Using an A4 sized, blank sheet of paper as a test ‘projections’ surface, the camera was placed facing it so that the paper filled the whole of its field of vision.  The small IR lamp was placed at about a 45° offset.

This was set-up next to the computer so that the results could be viewed nearby.  This proved usable for most tests and was sufficient to refine the both the calibration and fingertip search algorithms.

4.4. Equipment Issues

4.4.1. Infrared Illuminator

When the test area was scaled up to test in a full size environment, the original 48 LED IR light was not strong enough to illuminate the entire area of the screen instead producing only a sufficiently lit area at the centre when positioned closely, or a very faint glow over the whole at greater distances. 
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Figure 12: Lighting a small area
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Figure 13: Lighting a large area


The lamp was a spotlight by design and so cast a strong light in the centre, fading towards the edges, hence the image processing algorithms would work in the centre of the image where the light/shadow contrast was strong, but towards the edges it became either extremely difficult or impossible for features to be picked out, resulting in both numerous false positives and false negatives. When at larger distances there was not enough light to cast discernable shadows onto the surface and was thus useless for the task.

A temporary workaround was used until another IR light source was found in an OHP.  Whilst experimenting with using a backlit method similar to MimeControl [Simpson ZB, 2002] or [Neon Racer 2005], the original lamp was bright enough light a significant area of a relatively small projection area from close range and at a slightly oblique angle, such as from almost directly below the screen (
Figure 14: Small set-up – backlit
).
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Figure 14: Small set-up – backlit
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Figure 15: Shadowy object


Here, any objects between the camera and the light would block out the lit surface and show up as dark silhouettes (
Figure 15: Shadowy object
).  Whilst this technique did not fit in with the original plans for fingertip calculation, it proved to work quite well particularly when the black/white threshold for generating binary images was increased, this caused the light areas to bloom and create thinner silhouettes, particularly useful for making the tips of the fingers into acute angles which could be picked up by the search algorithm.
Whilst testing the program in this state, it proved difficult to identify a ‘touch’ event as the user could not touch the screen without the silhouette disappearing.  To counter this two-fingered method of control (as discussed above) was implemented to allow the user to indicate when they wished a ‘touch’ event to occur without having to actually touch the screen.

In addition, whilst using this set-up pre-emptive shadows [Tan, DS, Pausch, R. 2002] were tested.  Simply by inverting the binary image used to identify the silhouettes (in this image the screen has a value of zero, and the silhouettes have values equal to full-brightness) and subtracting it from the final image before it is displayed and projected back onto the screen.  This has the effect of subtracting zero from un-shadowed areas and leaving them unchanged, but subtracting the maximum value from any areas that would be in shadow, making them 100% black.  However, to the user does not experience black shadows being left on the image, the areas that are black are projected onto the user, but as black is not a projected colour, being simply the absence of light, it simply has the effect of projecting nothing, meaning that no imagery is projected onto the user’s hands or face – if they happen to be standing directly in front of the screen – this allows the user, as shown by Tan and Pausch [2002] to look directly away from the screen and towards any possible audience without being blinded by the light from the projector.

4.4.2. Camera

The camera used for testing had an operating resolution of 320x240 pixels, no matter what the resolution of the actual game being played is at, the touch sensitivity is limited to the lower limit of the camera, for many applications this is unlikely to be a problem – activating large buttons in a presentation will not need fine grained accuracy, whereas a situation where the user draws a line with their finger would draw attention to it.  For the most part, using an interpolation algorithm inside the program to move the cursor or to calculate an instantaneous position will be sufficient, to achieve higher accuracy a, a higher specification camera would be required, this in turn would require more computing power as the images being processed would be larger themselves.

Calibration

The calibration algorithm proved to particularly robust provided that the surface was evenly lit and that the markers were large enough and reflected as close to no light as possible, small squares of black electrical tape worked at this scale.  The system would correctly identify the corners and warp the image, updating in real-time when the camera or any of the markers were moved.  

However when the system was scaled up to full size a number of problems were introduced.  As mentioned, the original smaller light was insufficient to illuminate the whole screen; markers lie at the four extremities of the screen they would always fall outwith the well lit area in the centre of the screen.  With the markers in darkness it was impossible for the algorithm to identify them and they had to be identified by using the manual, mouse input, method.  When the alternative OHP light source was tested, the markers were still in marginally darker areas but in this case the difference was not enough to cause problems.  

The problems in this situation came from the cameras wide FOV.  The camera should be placed as close to the projector as possible, although not necessary, it reduces the amount of perspective distortion that must be corrected by this calibration step.  The FOV of the camera was much wider than that of any of the projectors used and so not only could the camera see the screen but also a great deal of the surrounding area too.  The image captured by the camera contains much more information than is necessary, shadows and reflections caused by objects surrounding the screen will not only cause false positives in the fingertip search, but also results in too many dark blobs for calibration.  As more possible areas than the four markers are found, the algorithm does not know which should be used for the warp stage and instead does not deform the image at all.

Unfortunately, without access to a camera or lenses to create with a thinner angle of FOV this severely limited the testing that could be done to test the calibration at full scale.  The small scale tests showed that the algorithm was effective with the correct set-up (placing the camera close to the screen effectively creating a smaller FOV, but impeding the ability to project onto the surface without resulting in shadows which would affect the image processing.

4.5. Fingertip Search algorithm

Shortly after the original threshold function was implemented, a very basic version of the fingertip search algorithm was added.  This first function would simply run through all the pixels in an image and identify any three neighbouring ones that followed the pattern, white-black-white; the heuristic in this is that the tips of triangular shadow shapes, will, at the very point, be only one pixel across.  This proved to be quite effective in identifying the correct points, although only when the angle of the shadow was vertical or up to about 30° from the vertical; after this point, the pixels at the tip were no longer in the same horizontal pattern.  Although the fingertips were almost always correctly identified this algorithm also marked large numbers of incorrect points.  By adding the stipulation that the pixel above the black one in this pattern was non-shadow reduced the number of false positives, however it also reduced the workable angle of the shadow by about 10°.  Whilst this was an interesting experiment, it was not sufficiently accurate to suggest that such a simple method would be workable without significant improvement.  

Comparing patterns of pixels with pre-defined template patterns is a commonly used method for object or facial detection and matching in many computer vision applications [Letessier, J, Berard, F. 2004][Crowley, J et al. 1995] however it can be very processor intensive due to the fact that the image must be looped through to test against the template multiple times.

The work done in Play Anywhere [Wilson, A. 2004] suggested that by adopting a vector based search method would be simpler and equally, if not more, robust than using a statistically based template matching algorithm.

As detailed in the implementation section, this vector method, tracing the outlines of shadows and working with the internal angles and lengths of the sides proved to work well and was used in the final version of the test program.

Results and Findings 

4.6. Results

The test program shows that the theory is behind the touch sensing algorithm is sound and that the calibration routines are similarly robust in the optimum situations.  

The greatest issues were introduced when the project was scaled up to full size and the IR light and camera proved to be underpowered for use at this scale.  Despite the failings of the equipment, the algorithms only degraded slightly, and for the most part were still very usable.  On a larger scale, and when using the single finger model, the system is not as easy to use, positive results are found almost always whenever a finger is between the camera and screen, often due to the self shadowed side of the finger and not because of the occluded shadow on the screen.  However when the two finger model is used, although the system is not as instinctive to use until some experience has been gained it is much more robust.  To a new user the act of extending another finger to indicate that they wish an action to occur is not as natural as simply touching, but after being introduced to the operation it quickly becomes as natural as clicking a mouse is to most computer users.

Answer to question

The question was aimed at investigating a usable system that could be set up, and used by most people without training.  

The image based calibration system devised, whilst not completely automatic is extremely simple and even without knowledge of the intimate details of the processing, makes sense to most people, by placing the markers they are letting the computer know where the screen is.  After the markers are placed, and if it is assumed that the environment is ideal (i.e. lighting is strong and even across the whole field of view and all corners of the projection can be seen by the camera), the calibration should work every time, stay stable and self-correcting.

The touch interaction algorithms however are not as robust.  In answer to the question, of the methods investigated, the two fingered model is the most viable for the situation.  Whilst it suffers from confusion on the relatively few occasions when too many points are found and will also occasionally not be able to find points, it does act as expected most of the time, and the problems mainly result from the equipment issues introduced at large scales.  The tests done at smaller sizes show that these methods would be more stable if the equipment specifications were scaled up with the same ratios as the distances.

Conclusions

4.7. Discussion 

The project investigated methods for achieving large-scale touch sensitivity for arbitrary surfaces, and implemented a selection in a test application.  Due to some limitations of the equipment used, the algorithms used could not be tested fully, at a realistic size.  When the apparatus was scaled down (to a screen approximately A4 sized) the system proved to be robust, due to the relatively increased abilities of the equipment.

The work built on theories introduced in previous work, IR illumination [Wilson, A. 2004], [Simpson ZB. 2002], shadow analysis [Wilson, A. 2004] and contour tracing [Crowley et al. 1995], whilst opting for new techniques in the form of a fast, sharp angle finding algorithm over a more traditional template based image analysis. 

The equipment used was also carefully considered and selected so as to be able to give a simple, hassle free set-up to new or inexperienced users.  The novel idea introduced here is of a semi-automatic calibration system with minimal input from the user.  The process is interactive and instructions can be displayed by projection to assist the user at all times, adding to the ease of use.

The research done shows that shadow interaction, in general, is a very viable solution for interacting with projected visuals.  People are very aware, and used to their own shadow, so it is a natural interface for the game being played, this has been demonstrated particularly well in the work done by Simpson [Mime Control, 2002].  The touch system investigated in this project takes the idea of interacting via shadows to the next level.  By removing them from the player’s perspective, although the system uses their shape to determine events, the user is not aware of this, as far as they are concerned the action of physically touching, is what causes a response.

The system is not without fault, as mentioned, because it is an image based systems any occlusion caused by other people or things moving in front of the light or camera can disrupt the user’s experience.  The system is however, unlikely to be used in a situation where this is the case, in a presentation the audience does not move, and in a home, there are unlikely to be many people moving around either.  However in a space such as a gallery or conference hall this would become very detrimental as tens or hundreds of people walk through the area, Utilising a rear projection system, and by mounting a light close to the screen as in Shadow Garden [Simpson ZB. 2002], this problem can be overcome.  Other concerns may be brought up regarding the speed and accuracy of the system, currently the image processing thread of the program runs at around 10-15 frames/second and a noticeable lag can be seen as the cursor ‘chases’ after the user’s finger, instead of being directly below.  The code is, at the, moment almost completely un-optimised and it is almost certain that cleaning up the main function loops will increase this speed.  As for the accuracy, as stated above, this is largely due to the limitations of the equipment – with a camera of higher resolution, the cursor would more accurately be able to follow the finger.

Conclusions and Recommendations 

This project has demonstrated that using equipment available to the general consumer, a system to enable touch-screen like interaction on a large scale is a viable concept.  The system outlined is simple to set-up in its current state, and easily and semi-automatically calibrated.

Recommendations for future research are the investigation of combining other technologies, such as using image templates to help calculate the positions of fingertips more accurately, and to help reduce false positives, and to test other types and combinations of equipment.  Changes such as a higher resolution camera or more powerful IR illuminators would increase the accuracy and therefore usability of this project, this would be an ideal point to begin from.

The opportunities afforded by a system such as this are very exciting, from simply making business presentations easier, to creating more immersive worlds for game players to explore, or even completely new types of game, previously impossible due to limitations of current interfaces.  If the system was made available in a complete package with a minimum hassle set-up, anyone would be able to experience the ease of use and intuitivity of this type of system, which at the present time is still confined to research laboratories throughout the world.

  As with the many of the other research projects looked into throughout the course of this project, now that the idea has been introduced, the possibilities that emerge are seemingly endless.

Appendices

4.8. Appendix A: Experimental results

4.8.1. Pixel based search

Testing the number of possible positions returned when looking for dark pixels:

	Pattern
	Approximate number of positives
	Do any positives fall on fingertips?

	
	Many (20 - 40)
	Often

	
	Some (10 - 15)
	Sometimes

	
	Few (0 - 5)
	Occasionally


4.8.2. Vector based search

4.8.2.1. Angle between lines

Testing the number of possible positions returned when looking at angle only:

	Angle
	Approximate number of positives
	Do any positives fall on fingertips?

	10
	 0 - 2
	Very rarely

	20
	0 - 4
	Sometimes

	30
	0 - 5
	Almost always

	40
	1 - 8
	Sometimes

	50
	3 - 12
	Rarely


4.8.2.2. Length of lines making angle (30°) 

Testing the number of possible positions returned when looking at angle with variable length of the lines (in pixels) at either side, for a 320x240 pixel image:

	Length
	Approximate number of positives
	Do any positives fall on fingertips?

	< 5
	1
	Very rarely

	< 15
	1
	Usually

	< 20
	2
	Usually

	< 30
	3
	Usually

	< 50
	5
	Usually


4.9. Appendix B: Main Functions - Code

4.9.1. Calibration

//----------------------------------------------------------------------------------

// Calibrate (tracecoutours+warp)

//

// Camera should point at a screen which is 100% white when thresholded (as above)

// User needs to then place 4 (DARK) markers at the corners of the screen, 

// (eventually at the corners of the projected image) and within the cameras view, 

// these will be used to identify the corners of the image.

//

//----------------------------------------------------------------------------------

int Calibrate(const IplImage *_src, const IplImage *_previous, IplImage *_dest)

{


IplImage *grey = cvCreateImage(cvSize(_src->width, _src->height), 

IPL_DEPTH_8U, 1);


CvSeq* contours = 0;

 
CvMoments moments;


CvMemStorage* storage = cvCreateMemStorage(0);


int r = 0, i = 0;


// Convert to greyscale and threshold


cvCvtColor(_src, grey, CV_RGB2GRAY);


cvThreshold( grey, grey, GetThreshold(), 255, CV_THRESH_BINARY_INV );


// Clean image of small noises


cvErode(grey, grey, NULL, 3);


cvDilate(grey, grey, NULL, 3);


// Find the contours  of markers


r = cvFindContours( grey, storage, &contours, sizeof(CvContour), 

CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );


CvPoint2D32f tempWPt[4]={{0,0}, {0,0}, {0,0}, {0,0}};


CvPoint2D32f tempWCn[4]={{0,0}, {0,0}, {0,0}, {0,0}};


// Get center of images


if(r>0)


{



CvSeq* c = contours;



float x=0, y=0;



//Get center of each marker



for(; contours!=NULL;contours = contours->h_next)



{








cvContourMoments( contours, &moments);








x =float(moments.m10/moments.m00);




y =float(moments.m01/moments.m00);




cvCircle(_dest, cvPoint((int)x, (int)y), 3, CV_RGB(0,0,0) );




if(i<4)





{





tempWPt[i].x =x;





tempWPt[i].y =y;





i++;




}






}



// Calculate what corner to adjust marker to



for(i=0;i<4;i++)



{




CvPoint cnr = ClosestCorner(cvPoint((int)tempWPt[i].x, 

(int)tempWPt[i].y));




cvLine(_dest, cvPoint((int)tempWPt[i].x, 

(int)tempWPt[i].y), cnr, CV_RGB(255,255,0) );




tempWCn[i].x=(float)cnr.x;




tempWCn[i].y=(float)cnr.y;



}



contours = c;



if(r==4)



{





for(i=0;i<4;i++)




{





g_WarpPt[i]
= tempWPt[i];





g_WarpCnrs[i]
= tempWCn[i];




}




cvWarpPerspectiveQMatrix(g_WarpPt, g_WarpCnrs, g_WarpMtx);




cvWarpPerspective( _src, _dest, g_WarpMtx);



}


}


cvDrawContours( _dest, contours, CV_RGB(255,0,0), CV_RGB(0,255,0), 

1, 3, CV_AA );


for(i=0;i<4;i++)


{



cvLine(_dest, cvPoint((int)tempWPt[i].x, (int)tempWPt[i].y), 

cvPoint((int)tempWCn[i].x, (int)tempWCn[i].y), CV_RGB(255,255,0) );


}


cvReleaseImage(&grey);

cvReleaseMemStorage( &storage );



return 1;

}

Shadow analysis and conversion to mouse-like device

int TipsAsMouse1F(const IplImage *_src, const IplImage *_previous, IplImage *_dest)

{


IplImage *grey
= cvCreateImage(cvSize(_src->width, _src->height), 

IPL_DEPTH_8U, 1);


CvSeq*


contours
= 0;


CvMemStorage*
storage

= cvCreateMemStorage(0);


int



r


= 0,






i


= 0;


CvPoint


BL


= cvPoint(20,20);


CvPoint


TR


= cvPoint(300,220);


// Make greyscale and threshold the image


cvCvtColor
(_src, grey, CV_RGB2GRAY);


cvThreshold
( grey, grey, GetThreshold(), 255, CV_THRESH_BINARY_INV );


cvCopy

(_src, _dest);


// trace the contour


r = cvFindContours( grey, storage, &contours, sizeof(CvContour), 

CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
  


//look for tips if theres anything to look at


if(contours)


{



int

numpts = 5;



CvPoint tips[5];



CvPoint *tPtr[5];



//set tips to offscreen



for(i = 0; i < numpts; i++)



{




tips[i] = cvPoint(-10,-10);




tPtr[i] = NULL;



}



// find tips



contours = cvApproxPoly( contours, sizeof(CvContour),

storage, CV_POLY_APPROX_DP, 3, 1 );



GetTipsFromContours(contours, tips, 5);



int tip1 = -1;



int tip2 = -1;



for(i = 0; i < numpts; i++)



{




if( !((tips[i].x < BL.x) ||


(tips[i].y < BL.y) || 

(tips[i].x > TR.x) || 

(tips[i].y > TR.y)) )




{






if(tip1 == -1)





{






tip1 = i;






cvCircle(_dest, tips[i], 5, CV_RGB(255,0,0) );






}





else if(tip2 == -1)





{






tip2 = i;






cvCircle(_dest, tips[i], 3, CV_RGB(0,255,0) );






}





else





{











cvCircle(_dest, tips[i], 2, CV_RGB(0,0,0) );






}





tPtr[i] = &tips[i];




}




else




{





tips[i] = cvPoint(-10,-10);




}



}




//HACK Hardcoded numbers!



if(tip1!=-1)



{




g_Controller.m_Hand.FillValues1F(float(tips[tip1].x), 

float(240 - tips[tip1].y));



}


}


// Release up any used memory


cvReleaseImage

(&grey);

cvReleaseMemStorage
(&storage);


return 1;

}

Finger-mouse HCI device class

class SCtrl2D_1Btn

{

public:


float x, y;


float dx, dy;


bool state;


bool press;


bool toggle;


bool release;


SCtrl2D_1Btn();

};

class CHandControl : public SCtrl2D_1Btn

{

public:


CRITICAL_SECTION
mCS_AccessMembers;


float



m_ScaleX;


float



m_ScaleY;


float



m_ToleranceRadius;


CHandControl();


~CHandControl();


bool FillValues1F(float x1, float y1);


bool FillValues2F(float x1, float y1, float x2, float y2);


void Update(SCtrl2D_1Btn &_ctrls);

};

Finger-mouse HCI device update code

bool CHandControl::FillValues2F(float x1, float y1, float x2, float y2)

{



bool changed = false;


// Use CS to avoid access conflicts with the data


EnterCriticalSection(&mCS_AccessMembers);


{



// point 1 is on screen;



if((x1 > -1) && (y1 > -1))



{




bool old = state;




// point 2 is on screen;




if((x2 > -1) && (y2 > -1))




{






state = true;





// Work out which is closeset 

// to the last point and set it as pt1





vec2f pt1(x1-x, y1-y);





vec2f pt2(x2-x, y2-y);





if(pt1.LengthNoRoot() > pt2.LengthNoRoot())





{






float tx = x1;






float ty = y1;






x1 = x2;






y1 = y2;






x2 = tx;






y2 = ty;





}




}




else




{





state = false;




}

            // Fill buttons




toggle = old ^ state;




press = toggle & state;




release = toggle & old;




// Fill positions




dx = x1 - x;




dy = y1 - y;




x = x1;




y = y1;




changed = true;




}


}


// Leave CS to let others access the data


LeaveCriticalSection(&mCS_AccessMembers);



return changed;

}

Appendix C: Photographs of the system in use
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	Figure 16: A simple cursor at the user’s fingertip
	Figure 17: A piece of rainbow coloured string hanging from the fingertip
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	Figure 18:  The string can be dragged around the screen
	Figure 19: A box being selected by the user
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	Figure 20: The box can be moved by repositioning the hand
	Figure 21:  The box will centre itself on the fingertips
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	Figure 22:  Computer, projector and camera
	Figure 23: OHP with filters to block visible light and allow IR light to pass


Appendix D: Project Proposal

4.9.2. Introduction

Video games and the hardware that they run on are no longer confined to the children’s bedrooms of a modern home.  They now take center stage beside the family television in the main living space.  As we move forwards and the price of home cinema systems, projectors and flat-screen panels fall, the whole audio-visual experience of film, television and games becomes larger and more immersive than it ever before.  With new peripherals designed to draw a player into the game by offering new methods of control, such as Sony’s EyeToy, Sing Star and Buzz, and In2Games’ Gametrak the boundary between the player and the game is becoming more indistinct.

With an increasing number of ways to interact with the games, a logical step forwards seems to be to allow the player to touch the images output by the computer, and until recently this has only been possible with the use of additional hardware embedded into the screen [Rekimoto 2002, p.1], or very high powered image processing computers.

Computer vision methods, traditionally very computationally intensive, are now possible to run on current, consumer grade hardware [Wilson 2005, p.9], and most importantly, can be run alongside other applications, such as a game.  

Using computer vision based methods, interaction with computer-generated images is becoming a popular medium in many technology based art installations [MimeControl.com, 2005], is being exploited for advertising purposes [Reactrix.com, 2005], and is the focus of a lot of research in business presentation settings [Bérard 2003, p.1], but until very recently [Wilson 2005, p1][Bernert et al 2005, p2], it has been underrepresented in video games. Such recent research represents one way that games can be taken forwards, in a similar vein to Nintendo’s touch screen DS console, by allowing the user to touch the images, the act of interacting is less alienating than interacting through a separate controller peripheral, the audience can be widened and more people introduced to games where they may have been put off before by the awkward control interfaces introduced by game-pads and keyboards.

4.9.3. Research Topic

Out with the games industry, ubiquitous computing and alternative sensing methods are a popular area of current research, a great deal being involved with computer vision in areas of the manufacturing industry and those of security and safety.  This project aims to look into the research being performed in theses areas and how that can be applied to giving another facet to interaction with games.

The project will involve research into the image-based methods of input required to allow a user to interact directly with a computer-generated image.  In addition, research into simplifying, or negating the need for calibration of the necessary equipment will also be conducted.

This project aims to bring such interaction technology a step towards a state where it can be placed into a gamer’s hands and they will be able to use it with a minimum of fuss.  To achieve this, proper calibration of the system is likely to be one of the most important sections of the project.

With the calibration working and in place, the main focus of the project will shift to user interaction with an image produced by the computer.  The image will be displayed using a projector and the player will stand between the projector and display surface, occluding the image and casting a shadow upon the surface.

The player will then be able to interact with the projected image by touching it in a manner similar to a standard touch screen.  As the image source will be behind the player, their shadow will be cast over the image surface; applications developed for this system will have to take this into account.

4.9.4. Research Question

“What are the most viable methods for real-time interaction with projected game visuals without utilising wired surfaces or worn equipment; with a view to creating an automatic, stable system for consumer use”.

4.9.5. Project Execution

Research will be carried out in the main subject areas of camera/image calibration and computer vision based interaction.

Image input has been previously achieved in different ways, using a single camera [Pinhanez C. 2001], multiple cameras [Bérard, F. 2003][ Wren, CR, Ivanov, YA. 2001], a single infrared camera [Wilson, A. 2005], and multiple infrared cameras [Wilson, A. 2004]
From research conducted so far, infrared seems to be most appropriate as this removes the complexities of distinguishing between the projected image and the actual objects that interact with the image.  Using infra red has been decided to be the best direction to take the project in, however infrared cameras or filters can be expensive, so for the purpose of this project an ordinary Logitech Web Cam has been converted to operate in the infrared spectrum using instructions found online [Johnson, G. 2005].

The basic input part of the imaging side of the application will be built using techniques researched and tried last year [McLaughlin, CP, Yamada, A, Hongo, H. 2005], and built into an existing game engine, also from a previous project.

Working on touch detection will require more detailed research, but considering the camera setup being used, a technique similar to that used in PlayAnywhere [Wilson, A. 2005] will be focused on, it appears to be robust enough and uses only one camera, however problems may arise due to the fact that the camera in this system will be at a different orientation than that in PlayAnywhere.

4.9.5.1. 12 week Outline Plan

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Working application with camera input/display, working alongside game engine.


	Lens barrel undistortion /calibration.

Mouse based image calibration
	Semi automated image based calibration
	Shadow interaction with screen [outline/fire demo1]
	Touch detected in pre-defined areas2
	Touch interaction with any area of screen3
	Buffer weeks4

	Note taking and additional research will be an ongoing activity for the whole project
	Formal Report



1: Simple demo application, exhibits response around blocked out areas [shadow], contour tracing or simple fire effect.

2: Application to test for touch only on buttons or similar, limits search area and therefore some of the problems that searching the whole screen could cause (extra shadows, multiple touches etc.)

3: Simple application to demonstrate ability to touch any area of the screen, drawing lines, whack-a-mole style game where the player touches enemies to eliminate them, or a similar, simple to write, and play, game.

4: These two weeks are left free to allow for other weeks to over run or other problems that may arise.

4.9.6. Project Evaluation

The project aims to introduce a vision based solution that can be used by consumers without experience, therefore the ideal test would be to give the equipment to a person with no experience in this field and observe how they use it.  A minimal amount of instruction would be given and this part of the project could be deemed successful if this person can get the system set up and calibrated without any extra assistance.

Setup of the system however is only one part of the project, interaction with the images is equally, if not more important for creating a usable application.  If the project has a perfect result, this will manifest by giving a response wherever the user touches the screen.

If the system is not perfect then errors such as false positives (the system registers a touch when there is none) and false negatives (registering a touch when there is) can be recorded, and error rates calculated.

If error rates are low then human observation and the impact on the game being played can be also considered.

To test these, some simple applications should be written, one to test basic interaction (e.g. the contour/fire demo mentioned in Project Execution), and a simple game that demonstrates how such a system could be used in a gaming environment.

4.9.7. Issues

The final outcome of the project is planned to be usable by almost anyone with no training, this is perhaps one of the biggest issues.  If a completely automatic method of calibration cannot be found then there are multiple stages at which human error could upset the system, for example by making a mistake during calibration, by setting up the equipment at incompatible angles and/or distances or bumping or otherwise altering the orientation or position of equipment after calibration.

Even if none of the above happens, vision based solutions are more susceptible to error and unexpected outside elements, an object with a similar shape/shadow to a persons finger may cause touches to be incorrectly registered, or shadows may not fall in the expected position or shape, causing touches not to be registered.

During development these problems will have to be investigated to minimise the errors that they may cause.

As computer vision is a fairly immature topic in computing science terms, there are many different ways of doing almost everything in the field, but without the years of usage that ideas have had in other fields, e.g. graphics or sound processing, it is often difficult to tell which methods are best suited to a particular application.  So careful attention has to be paid when selecting which methods to use or build upon.

4.9.8. Resource Requirements

The project examines the use of technologies not in widespread use as of yet and therefore requires some equipment in addition to a medium to high spec consumer grade computer.  The computer should have the Open Computer Vision libraries installed as the project will be making extensive use of them to create the application.

A data projector is required, the exact resolution and refresh speeds are unimportant for the purpose of this research, but should be capable of displaying a video game in real time.  Therefore a screen size and refresh rate minimum of 800x600 at 50Hz would be recommended.

An infrared video camera is needed and as this will be the primary input device for the project, it should run at approximately the same speed as the game’s frame rate, ideally 60Hz, but 30Hz should prove to be enough resolution for almost all outcomes.

If the camera does not connect directly to a computer, then a video capture device will also be required.

An infrared illuminator to provide the camera with a strong light source to identify the play area, as normal household or other lamps cannot be guaranteed to emit enough light in the infrared spectrum.

4.9.9. Resource Sourcing

Within the University, any of the computers within the Computer Games Tech laboratories [3516-3519] will be of a high enough specification to run the project upon.

An USB infrared camera and illuminator have been acquired, however device drivers for the camera will have to be installed on any computers to be used for the project, and the illuminator will likely have to undergo University testing for electrical safety before being used.

These computers will also require that the OpenCV libraries are installed and usable.

A data projector can be acquired from the AV Desk whenever required for testing.

4.9.10. Conclusion

Interaction with displays is not a new idea, but the equipment for such touch-screen technology has bee prohibitively expensive for consumer use.  The research being conducted in this project should allow anyone with an existing projector set-up to experience a much more immersive experience than can be offered presently at a minimal cost to the user.  Drawing the player into the game by involving them directly with the images on the screen, similarly to the Nintendo DS, should doubtless lead to new interesting game types and genres, taking us one smaller step towards a truly virtual reality.

Appendix E: Project Plan

	Week 1 - Ending 3rd Feb 2006

	Web cam input integrated into game engine as a simple to use, self contained class.

	Week 2 - Ending 10th Feb 2006

	Lens barrel undistortion /calibration.

Mouse based image calibration (i.e. manually define corners of projection)

	Week 3 - Ending 17th Feb 2006

	Semi automated image based calibration (automatically identify markers placed at corners, i.e. highly reflective, or highly non-reflective tokens /pieces of paper)

	Week 4 - Ending 24th Feb 2006

	Shadow interaction with screen (Pre-emptive shadows, this is a slightly different arrangement than the final plan, but will be an interesting exercise – The projector simply projects a silhouette of the user back on top of them, blocking the blinding light from the projector)

	Week 5 - Ending 3rd March 2006

	Shadow interaction with screen (Basic block interaction, e.g. shadow as source of ‘fire’, ‘smoke’ or similar)

	Week 6 - Ending 10th March 2006

	Touch detection (indicate possible areas of touch, no formal response, this will likely return many false positives such as areas with sharp shadows that are not fingers)

	Week 7 - Ending 17th March 2006

	Touch interaction in pre-defined areas (e.g. test for touches as above, but only look in ‘button’ areas)

	Week 8 - Ending 24th March 2006

	Touch interaction with any area of screen. (This will take longest of all to get the algorithm accurate)

Begin rough draft write up 

	Week 9 - Ending 31st March 2006

	Touch interaction with any area of screen. (Test for other people, the system is of no use if only I can use it)

	Week 10 - Ending 7th April 2006

	Touch interaction with any area of screen.

Improvements in ease of calibration

	Week 11 - Ending 14th April 2006

	Touch interaction with any area of screen.

Improvements in calibration.

	Week 12 - Ending 21st April 2006

	Buffer Week 1

Start poster presentation

	Week 13 - Ending 28th April 2006

	Buffer Week 2

Final write up

	Week 14 - Ending (Thursday) 4th May 2006

	Completion of poster presentation / dissertation
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